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Abstract 

The purpose of this paper is to describe a new class of Poisson and symplectic structures on Lie 
algebras. This gives a new class of solutions of the classical Yang-Baxter equation. The class of 
elementary Lie algebras is defined and the Poisson and symplectic structures for them are described. 
The algorithm is given for description of all closed 2-forms and of symplectic structures on any 
Lie algebra G, which is decomposed into semidirect sum of elementary subalgebras. Using these 
results we obtain the description of closed 2-forms and symplectic forms (if they exist) on the Bore1 
subalgebra 23(G) of semisimple Lie algebra B. As a byproduct, we get description of the second 
cohomology group H2 (a(G)). 
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0. Introduction 

The purpose of this paper is to describe a new class of Poisson brackets on simple Lie 
algebras and symplectic Lie algebras. This gives a new class of solutions of the classical 
Yang-Baxter equation. 

Let us first recall some basic facts on the classical Yang-Baxter equation, referring the 
reader for more details to the well-known paper by Belavin and Drinfel’d [ 11. 
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The classical Yang-Baxter equation (CYBE) is the functional equation 

[X12@1, h2)r x13@19 k3)1 + [xlZ@l, AZ), X23@2~ A311 

+ [x13@l~ A319 X23@2v h3)1 = 0 (0.1) 

for the function X(h, pu) taking the values in G 8 6, where G is the Lie algebra. In order 
to define the quantity Xt2(At, AZ), following [I], we fix an associative algebra A with unit, 
which contains G and the linear maps (~12, n3 and ~13, so that 

(012: G@G-+ dadAdA, q.q2(a @b) = a 8 b @ 1 (0.2) 

and analogously for maps ~23 and 6013. 

Note that if X(A, p) is a solution of Eq. (0.1) and (p(u) is a function with values in 6, 
then X(h, CL) = (p(h) 81 q(~))X(k,, P) is also a solution of (0.1) and we will consider the 
solutions X and X as equivalent. Let us introduce the following definition. 

Definition 0.1. The function X@, p) is invariant relative to g E Aut G’, if 

(g @ g)X@t, LL) = X(k, P). 

The set of all such g forms the group that is called the invariance group of X(h, P). The 
function X(h, ,u) is said to be invariant with respect to h E G if 

[h 8 l + l @h, X(h, /A)1 = 0, 
i.e. if it is invariant relative to exp{tadh) for any t. 

Note that if X(k,, p) is a solution of (O.l), which is invariant relative to the subalgebra 
Z c 9, and if a tensor r from ‘FI @ 7f satisfies the Yang-Baxter equations 

[r12, r131 + [r12, r231 + [r13, r231 = 0 (0.3) 

and 

r2l = --r12, (0.4) 

then the function X(h, CL) = X(k,, CL) + r is also a solution of (0.1). Note also that if the 
algebra ti is Abelian, then (0.3) is satisfied automatically. 

It is usually supposed that the Lie algebra Q is a finite-dimensional simple Lie algebra 
over C. In [l] the solutions of (0.1) have been studied in details, such that: 

(i) X@, P) is a meromorphic function; A, p c V, V is a domain in C; 
(ii) the determinant of the matrix formed by the coordinates of the tensor X(k, p) is not 

identically zero; 
(iii) X (A, ,u) depends only on the difference (h - p). 

In fact, as was shown in [2], condition (iii) indeed follows from (i) and (ii). 
In [l] three types of solutions of (0.1) were shown: 

(a) elliptic solutions, 
(b) trigonometric solutions, 
(c) rational solutions. 
All elliptic and trigonometric solutions were found. As for rational solutions, only few of 
them were found. The main purpose of this paper is to extend this class. 
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The paper is organized as follows. In Section 1 we recall some standard definitions and 
facts about Poisson structures. In Section 2 a decomposition of a Lie algebra G into a sum 
of two subalgebras is considered and relations between Poisson and symplectic structures 
on G and its subalgebras are studied. 

Their results are used in Section 3 to describe explicitly closed 2-forms and Poisson 
structures on the elementary Lie algebra En+1 which is the Iwasawa subalgebra of ~(2, n). 
The main result of this section is Theorem 3.7. It reduces the description of Poisson and 
symplectic structures of a Lie algebra li, which is a semidirect sum of a subalgebra .F 
and the ideal &+I, to the description of such structures on F. This gives an algorithm for 
description of all closed 2-forms and of symplectic structures on any Lie algebra which 
is decomposed into semidirect sum of elementary subalgebras. In Section 4 we construct 
canonical decomposition of the Bore1 subalgebra f?(G) of a semisimple Lie algebra G into a 
semiderect sum of elementary subalgebras (plus, may be, a commutative subalgebra of the 
Cartan subalgebra). Applying the results of Section 3, we obtain a description of closed 2- 
forms and symplectic forms (if they exist) on the Borelsubalgebra B(G) of a semisimple Lie 
algebra 4. As a biproduct, we get description of the second cohomology group Hz (a(G)). 

In conclusion, we would like to note that the present paper arise as the generalization of 
a simple example. Let 6 be the Lie algebra of type A,__1 with the standard basis eij, i. j = 
1 ,...,n 

[eij T ekll = ajkeil - &lekj, 

and hij be elements of the Cartan subalgebra 

hij = i(eii - ejj), [hij,eij] = f?ij, i # j. 

Then it is easy to check by a direct calculation that the tensor 

n-l 

W) 

(0.6) 

r = hln A eln + C elj A ejn, rEGAG, (0.7) 
j=2 

which determines the tensors rt2, r13 and r-23, is the solution of the Yang-Baxter equation 
(0.3). 

1. Poisson brackets on a Lie algebra 

I. I. Schouten bracket in the space of polyvectors and Poisson bivectors 

Let $7 be a Lie algebra and ~9 = C /\i 9 be the exterior algebra over Q. The Lie bracket 
on 0 determines naturally the bracket on ~6: 

[Xl A... AXp, y1 A... Ayq] 

~~(_~)P~i+i~lxlA...~i...AxpA[xi,yj]AylA...~j... A Yq; 

Xl,...,Xp,Yl,... ,Yq EG. 



194 D.V Alekseevsky, A.M. Perelomov/Joumal of Geometry and Physics 22 (1997) 191-211 

This bracket is called the Schouten bracket and it turns the space AB into a graded Lie 
superalgebra. 

Definition 1.1. 
(1) A bivector A E A~Q is called a Poisson bivector (or a Poisson bracket in the Lie algebra 

6) if it commutes with itself 

[A,A]=O (1.1) 

(this is equivalent to the classical Yang-Baxter equation (0.3)). 
(2) Rvo Poisson bivectors Al, A2 are called compatible if they commute: 

[AI, A21 = 0. (1.2) 

Note that this is equivalent to the fact that any linear combination hA I+ pA2 is a Poisson 
bivector. 

If (ei) is a basis in G, then A may be written as 

A=EA ‘jei A ej and [A, A] = C AiiAk’[ei A ej, ek A et], 

where the bracket of two simple bivectors is given by 

[X A y, U A u] = [X, U] A y A U + x A [y, u] A U + y A [x, v] A u +x A u A [y, v]. 

1.2. Poisson bracket induced by a Poisson bivector on a G-manifold 

Let M be a G-manifold, i.e. the manifold with a fixed homomorphism 

of a Lie algebra 9 into the Lie algebra X(M) of vector fields on M. 
The homomorphism 9 may be extended to a homomorphism 

of the Lie superalgebra of polyvectors on B into the Lie superalgebra of polyvector fields 
on M (relative to the Schouten bracket). 

In particular, the Poisson bivector A = A’jei Aej E A24 determines the bivector p(A) = 
Aijp(ei) A p(ej) on the manifold such that [p(A), p(A)] = 0. This bivector defines the 
Poisson bracket in the space of functions on the manifold according to the formula 

If, gl = V(A)(df, dg) = Aii(Xi . f)(xj . g), Xi = bo(ei). 

In particular, because the Lie algebra G acts naturally in G* and also in fj7, the Poisson 
bivector A determines Poisson brackets in the spaces of functions on Q* and Q. The Poisson 
bracket related to elements c and n E E* which are considered as the linear functions on G 
has the form 
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Note that bivector fields, corresponding to brackets, have the form 
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A,* = A’Jei A e. I’ 
A G = nijc? CBxkx’e* A e* rk Jl a b, 

where e,* is the basis of G* dual to the basis ei of 6, and CFk are structure constants of G. 

1.3. Support of a Poisson bracket and symplectic structures on Lie algebras 

Let A be a bivector on a Lie algebra Q. Then A determines the linear mapping 

A : 4” -+ 0, {+A.t=icA. 

Definition 1.2. The subspace 8~ = A(G*), which is the image of this linear mapping, is 
called the support of the bivector A E r\*Gn. 

Lemma 1.3. The support G,,I of the Poisson bivector A of the Lie algebra 4 is the Lie 
subalgebra of G. 

Recall that a symplectic form (or a symplectic structure) on a Lie algebra 9 is a closed 
non-degenerate 2-form o E A*G*. 

The closedness condition means that 

O= dw(x,y,z) =~x,y,z~(b,y~,z), x,y,z E 6, 

where *,,,,, denotes the sum of cyclic permutations of x, y, z. If w is a symplectic form, 
then the tensor A = W-I is a Poisson bivector. More generally, we have the following 
result. 

Proposition 1.4. Let A be a subalgebra of the Lie algebra B and o be a symplectic form 
on A Then the inverse tensor 

A = CO-I E A*d C A24 

is a Poisson bivector with support d, and any Poisson bivector may be obtained using this 
construction. 

Hence the classification problem for Poisson bivectors on the Lie algebra Q reduces to 
the classification of Lie subalgebras A c 8 with a symplectic form. 

2. Decompositions of a Lie algebra with a Poisson bivector or a closed 2-form 

Proposition 2.1. Let Q be a Lie algebra with a non-degenerate Poisson bivector A and 
w = A-’ the associated symplectic form. 
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Let A = Al + A2 be a decomposition of A into the sum of two bivectors Ai and di = 
SuppAi. Assume that A1 fl A2 = 0. This means that 6 = A1 + A2 is a decomposition of 
G into the sum of o-non-degenerate subspaces and Ai = (WI_,&-‘. 

Then 
(i) A1 is a subalgebra t, Al is a Poisson bivectol; 
(ii) Al, A2 are subalgebras + Al and A2 are commuting Poisson bivectors, 

(iii) assertion (ii) holds if[A,, A21 = 0 or A1 is an ideal. 

Proof It follows immediately from the remarks that Ai E A2di and 

[A2di, A2di] C A2di A [di,di], [A2d1,A2d2]c A1 A d2r\[d1,dz]. 
0 

Assertion (iii) implies the following. 

Corollary 2.2. Let 6 be a Lie algebra with a symplecticform w and A is the non-degenerate 
ideal of A Then w-orthogonal complement A' to A in G is a subalgebra. 

Proposition 2.3. Let 9 = A1 + AZ, A1 n d2 = 0 be a decomposition of a Lie algebra G 
into a direct sum of two ideals, and A = Al + A2 + A’ be the corresponding decomposition 
of a Poisson bivector A, Ai E A2di, A’ E A1 A AZ. Then A,, A2 are commuting Poisson 
bivectors. 

Proof This follows from relations 

[A2di, A2di] C A3di, [A2d,,dl Adz] c A2d1 r\dz, 
[Al A d2,dl A d21 cd1 A (A2d2)+A2d1 A AZ. 0 

Proposition 2.4. Let G = A + V be a semidirect sum of a Lie subalgebra A and a commu- 
tative ideal V. Let A be a Poisson bivector and A = Ad + Av + A’ be its decomposition. 
Then 

(i) Ad, Av are Poisson bivectors, 
(ii) [Ad, A’] = [A,, A’] = 0, 

(iii) [A’, A’] + ~[AA, Av] = 0. 
In particular; Ad, Av are commuting bivectors iff A’ is a Poisson bivector 

Corollary 2.5. Under the notation of Proposition 2.4, assume moreover that the sum is 
direct, i.e. V is a central subalgebm. Then a bivector A with the decomposition A = 
Ad + Av + A’ is a Poisson bivector ifand only if 
(i) Ad is a Poisson bivectol; 

(ii) A’ E cd(Ad) A V, where 

cd(Ad) = (a E A, adaAd = 0) 

is the stability subalgebra of Ad, and 
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(iii) suppA’ fl A is a commutative Lie algebra. In this case Ad, A,, A’ are mutually 
commuting Poisson bivectors. 

Proof Calculating the bracket, we obtain 

[A, Al = [Ad, Ad, I+ [Ad, A’1 + [A’, A’]. 

Since the summands belong to the different homogeneous components, the left-hand side 
vanishes iff all summands of the right-hand side are equal to zero. It is easy to check that 
the condition [Ad, A’] = 0 is equivalent to condition (ii) and the condition [A’, A’] = 0 
gives (iii). 0 

Proposition 2.6. Let A = dr +d2, At nsl;! = 0 be a decomposition of a Lie algebra 0 into 
a sum of two subalgebras and cot be a symplectic form on di, i = 1,2. Then w = 01 + 02 
is a symplectic form on G iff the natural representation addi of di (i = 1,2) into the space 
G/di * Aif, [i, i’} = (1,2}, is symplectic, i.e. itpreserves the symplecticform ait. 

Corollary 2.7. Let (di, oi), i = 1,2, be two Lie algebras with symplectic forms and 
cp : At -+ Der(d2) be a representation of A1 by means of derivations of the Lie algebra 
AZ. Ifthe linear Lie algebra p(d1) is symplectic, i.e. ifit preserves cry, then the semidirect 
sum (3 = (31 + !& has the symplecticform w = WI + ~2. 

Proof of Proposition 2.6. Let ai, bt , ci E di, i = 1,2. Then we have 

dw(at,bt,cl)= d~t(at,bt,ct) =O, 

dw(at, bl, ~2) =w([al, hl,c2) +Nh, c21,al) +Ni2,all, bl) 

=dadczal, h) + wh, ad&l) = (ad~,w)h, h), 

dda2, b2, ~1) = (adZ,W2)(a2, b2). 

Hence, dw = 0 +- ad>,02 = ad>,w) = 0. 0 

The following lemma gives a description of closed 2-forms on a semidirect sum of two 
Lie algebras. 

Lemma 2.8. Let 6 = A + B be a semidirect decomposition of a Lie algebra into a sum of 
a subalgebra A and an ideal B. Then 
(i) the A2d-component Ad of any Poisson bivector A on G is a Poisson bivector 

(ii) any closed 2-form o on 6 has the canonical decomposition 

W=@d+wn+o’, (2.1) 

where WA = wld, 013 = olB are closedforms on A and L? (considered in the natural 
way as forms on 6) and w’ E A* A B* c A~&T* is a 2-form that. satisfies conditions: 

w’(a, [b, b’l) = (ad&d@, b’) = oda, bl, 6’) + db, [a, b’l), (2.2) 
w’([a, a’], b) + @‘([a’, bl, a) + w’([b, al, a’) = 0, (2.3) 

fora,a’ E A, b, b’ E f3. 
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Conversely, for any closed 2-forms OA, wn on A and B and a 2-form of E A* A l3* that 
satisfies (2.2) and (2.3), formula (2.1) defines a closed 2-form on cj. 

The proof is straightforward. 
We shall denote by zi (A) the space of closed i-forms on a Lie algebra A. 

Corollary 2.9. Let 0 = A + f3 be the direct sum of two ideals. Then 

z2(S>=z2(A)+z2(a)+z1(A)r\z1(a>. 

In particular, if [A, A] = A then 

~~(4) = z2(A> -t- z2(B). 

As another corollary of Lemma 2.8, we have: 

Proposition 2.10. Let &T = A + B be a semidirect decomposition of a Lie algebra 0 as in 
Lemma 2.8. 
(i) Assume that [B, l3] = 0. Then the space ~~(6) of the closed 2-farms on Q is given by 

~~(9) = z2(A) + z2WA + z& 

where Zig is the space of adA-invariant 2-forms on I3 and z:n is the space of 
2-jkms from A* A f?* that satisfy (2.3). 

(ii) Assume that [A, A] = A, [A, I31 c [t?, f?] and let w be a closed 2-farm with the 
canonical decomposition (2.1). If on is adA-invariant form, then co’ = 0 and the 
decomposition Q = A + B is o-orthogonal: w(A, t3) = 0. 

Applying this proposition to the Levi-Malcev decomposition Q = S + R of a Lie algebra 
Q, we obtain: 

Theorem 2.11. Let &3 = S + R be the Levi-Malcev decomposition of a Lie algebra Q, 
where S is a semisimple subalgebra and R is the radical. Let o be a closed 2-form on 
0. Assume that its restriction of WR to R is ads-invariant. Then w(S, R) = 0 and o = 
ws + OR, where OS is the restriction of w to S. In particular; the form w is degenerate. 

Note that if the semisimple part S is compact, then any closed 2-form on g is cohomologic 
to a closed ads-invariant 2-form. 

Proposition 2.12. Let A c gl( V) be a linear Lie algebra and 6 = A + V the associated 
inhomogeneous Lie algebra, which is the semidirect sum of the subalgebra A and the vector 
ideal V. 

Then the space ~~(6) of closed 2-forms on D is the direct sum of three subspaces: 

~~(6) = z2(A) 6~ Add @ z’(A, V*), 

where Add is the space of ad*A-invariant 2-forms on V and 
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&A, V*) = {w E A* A V*Jw([A, B], x) = w(A, Bx) - w(B, Ax); 

A,BEd,xEV]. 

We note that we may consider z1 (A, V*) as the space of closed V*-valued l-forms on 
A, where the differential do of a l-form w: G -+ V* is given by 

do(A, B) = w([A, B]) - w(B)A + w(A)B. 

(Here we denote by 6 H .$A the action of A E d on the l-form 6 E V*, (tA)(x) = 
((Ax) forx E V.) 

Remark that any l-form $ E V* may be considered as a O-form on A with values in V* 
and, hence, it defines the exact l-form ws = dt E dz’(d, V*) c z’(d, V*): 

&A, x) = I. 

Corollary 2.13. Assume that H’(d, V*) = 0. Then 

~~(6) = z2(d) $ Add @I dz’(d, V*). 

Corollary 2.14. Assume that the action of A onto V preserves no non-zero 2-form on V, 
i.e. A2( V*)d = 0 and dim A < dim V. Then any closed 2-form w on Q is degenerate. In 
particular A does not admit a symplectic form. 

Proof Since A2( V > * d = 0 any closed 2-form may be written as o = WA + w’, where 
WA E z2(d), o’ E z’(d, V’). Since dimw’(d, V*) < dim V*, there exists v E V such 
that w’(d, v) = 0. It belongs to the kernel of o. 0 

3. Classification of Poisson bivectors on some Lie algebras 

Let A be a commutative subalgebra of a Lie algebra G. Then any bivector A E A2d c 
~~6 is a Poisson bivector. It has commutative subalgebra supp A c A as the support. 

The following simple proposition gives the complete description of all Poisson bivectors 
in a compact Lie algebra. 

Proposition 3.1. Any Poisson bivector A on a compact Lie algebra B has a commutative 
support. 

Proof Since any subalgebra of a compact Lie algebra is a compact Lie algebra, i.e. the 
Lie algebra of a compact Lie group, the support A = supp A of a Poisson bivector A is a 
compact Lie algebra with a non-degenerate Poisson bracket A. 

A compact Lie algebra A is the direct sum of a compact semisimple Lie algebra A’ and 
a commutative subalgebra a. By Corollary 2.9 the symplectic form o = A-’ on A is the 
sum of symplectic form o’ of A’ and a symplectic form WE of A’. To finish the proof, we 
must show that A’ = 0. This follows from the well-known lemma. El 
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Lemma 3.2. Any closed 2-form w on a semisimple Lie algebra 0 is exact, i.e. it has the 
form 

for some l-form 4 E G*. 

Its kernel ker w # 0 and it coincides with the centralizer in Q of the vector X = B-‘c E P 
associated with 4 by means of the Killing-Cartan form B of 9. In particular, there is no 
symplectic form on 0. This shows that A' = 0 and proves Proposition 3.1. 

Now we associate with a symplectic vector space (V, o) over field k = 04, @ some 
(2n + 2)-dimensional Lie algebra &n+t with the canonical symplectic form wCan and the 
canonical Poisson bivector Acan = 0;;. It is defined as follows: 

En+1 = keo + ket + V2” = kh + kr + k{pj, qk), 

[el, V”1 = 0, Ix, yl = 4x, yh, x, y E V”, 

Leo, 4 = 2el, adec)V” = 1. 

Acan = $0 A et + C(pi A qi), ocan = de; = 2eg A eT + o. 

Here (pi, qk} denotes a standard symplectic base of V” : 

W(Pi7 Pj) = W(qi, qj) = 0, O(pi, qk) = ajks 

The base {h = eg, r = el, pi, qj) will be called a standard base of &+I. The dual base of 
the dual space is denoted by (eg = h*, ef = r*, p’, q;}. 

Following [8] we will call &+I an elementary KZhler algebra. It is the Lie algebra of the 
Iwasawa subgroup AN of the Lie group G = SU(n, 2) = KAN. 

Lemma 3.3. Any closed 2-form p on &,,+I is exact and is a linear combination of the form 
wCan and a form of the type 

du* = e(; A v*, v* E (V”)*. 

Z7re form p is degenerate ifand only ifit is given by (3.1). 

(3.1) 

Corollary 3.4. Any non-degenerate Poisson bivector on En+2 may be written as 

fl=h&,+elAu, UEV”, O#IEk. 

Lemma 3.5. The stabilizer 

CE,,, (4 = Ix E &+I, Wx>A = 0) 

of any non-degenerate Poisson bivector A = Acan + el A v is equal to 

CE,,, (4 = kel. 
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We say that a bivector A is homogeneous of weight k if 
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(aden)A = kA. 

Note that any symplectic subspace U 2m of the dimension 2m of the symplectic space V*” 
defines a subalgebra 

& m+l = keo + U*” + kel 

of In+ 1. It will be called a standard subalgebra of En+ 1. 

Lemma 3.6. Let A be a homogeneous Poisson bivector on En+1 of weight 2. Then either 
A = supp(A) is a standard subalgebra of En+1 and A = Acan is the canonical Poisson 
bivector of the elementary algebra A, or A is a commutative subalgebra. 

Prooj We may write A as 

A = )ceo A el + Av, 

where Av E r\*V. 
If h = 0, then C = supp A is a commutative subalgebra of V. 
Assume now that ), # 0. Then 

C = suppA = k{eo, el) + W, 

where W is a subspace of V. We can write C as a semidirect sum C = A + B, where B is 
the kernel of the canonical symplectic form (T on W and A = @(eo, er ) + V is a standard 
subalgebra. Since f3 is a commutative ideal, we can apply Proposition 2.10. 

Note that 

ad,,1 A* B* = --2 . id. 

Hence Zig = 0. We claim that z& = ez A B*. 
Indeed, for o’ E z& b E t3, we have 

0 = do’(eo, el, 6) = w’([eo, ell, b) + o’([el, bl, eo) + w’([b, eel, el) 

= 2w’(el, b) + w’(el, b) = 0. 

o’(el, 23) = 0, 

moreover, the equations 

do’(er , a, b) = do’(a, a’, b) = 0 

for a, a’ E U, b E B, are satisfied automatically. The equation 

0 = dw’(eo, a, b) = w’([eo, a], b) + o’([a, b], eo) + w’([b, eo], a) = 2u’(a, b) 
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means that o’(U, f3) = 0. Hence o’ E e; A O* and z& = ez A B*. Applying 
Proposition 2.10, we have z2(C) = z*(d + a) = z*(d) + eg A L?*. Lemma 3.3 shows 
that any closed form on C has the form 

hcan + f?; A u*, v* EU*+t?*, 

where wean is the canonical symplectic form on A. It is degenerate if B # 0. On the other 
hand, the bivector A defines a non-degenerate closed 2-form A-’ on C = supp A. Hence, 
B = 0 and lemma is proved. 0 

The following theorem describes all closed 2-forms on Lie algebra which admits an ideal 
isomorphic to the elementary algebra. 

Theorem 3.7. Let B be a Lie algebra with semidirect decomposition 

where the ideal & = keo + kel + V is isomorphic to the elementary Lie algebra and the 
sublagebra 3 commutes with eg and has a semidirect decomposition 

3=d++‘, 3’ = [3,3l, [A, A] = 0. 

Then any closed 2-form o on g can be written as 

o = ~3 + AcH,,,, + du* + ez A a*, 

where h E k; ~3, wCan are the trivial extension to E of the restriction ol3and the canonical 
form of E, u* E V*; a* E A*. The form o depends on 1 + dim A parameteres. 

The form w is non-degenerate iflh # 0 and the system of equations 

@3(f? .I?> = (lloJ(rh~ ul, [f? ul), 

where fi is a basis of 3 and u = o -‘u* has only a trivial solution. 

Proof Changing the commutative subalgebra A if necessary, we may assume that it com- 
mutes also with et. 

By Lemmas 2.8 and 3.3, a closed form w on G can be written as 

where 03, o& = ho,,” + e; A u* are closed forms on 3, &, respectively, considered as 
forms on 9 and o’ E 3* A E* satisfies Eqs. (2.2) and (2.3). A direct calculations show that 
these equations are equivalent to the following relations: 

w’(3, et) = 0, o’(f, II) = u*([f, VI), w’(3’, eo) = 0 

forall f E3,vE V. 
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We can rewrite 0 in the following form: 

w = OF + hmcan + du* + w”, 

203 

where 0” E E* A F satisfies the relations 

0Y(3, ket + V) = 0, WN(3’, eu) = 0. 

Hence, w” = ez A a* for some a* E A*. It remains to study when w is non-degenerate. 
We may assume that h # 0, because in the opposite case el belongs to the kernel of w. 

Assume that a vector z = f + aeo + per + u belongs to the kernel of w. Then 

0 = o(t) = wr(f) + h(/?e: - ae; + av) 

+ adju* - CXU* + ad$* + a*(f)ei - au*. 

Projecting this vector equation onto F, e:, eT, V we obtain the following system: 

w~.f + ad*,u* - cza* = 0, h/9 + a*(f) = 0, 

hff = 0, hau + ad;u* - OIU* = 0. 

Hence, a! = 0, p = -l/L~*(f) - hu = 0-l adjau = adf and the kernel is determined 
by solutions f of the equation 

+f = (l/J&u 0 adIf,Ul. 

This proves theorem. 0 

Corollary 3.8. For a closed 2-form w the following conditions are equivalent: 
(1) @Is = &an, 
(2) u* = 0, 
(3) w is the sum of eigenvectors of the operator adeO with the eigenvalues 0 and -2. 

Zf [3, E] = V, these conditions are equivalent to 
(4) ~(3, E’) = ~(3, kel + V) = 0. 

Corollary 3.9. Assume that [3, E] = V. Then any closedform w on 6 with ~(3, E) = 0 
is given by 

where CL+ is a closed form on 3. It is non-degenerate ifSh #Q and 03 is a non-degenerate 
closed form on 3 trivially extended to 6. 

Pro05 Assume that ~(3, E) = 0. Then Q* = 0. Suppose that u* = 0. Then there exist 
f E 3 and v E V such that u*([f, u]) # 0. Hence, 

w(f, u) = du*(f, v> = u*([f, ~1) # 0. 

We come to a contradiction. Cl 
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The Lie algebra 6 is called Frobenius one if it admits an exact symplectic form o = d.$. 
In other words, this means that the coadjoint action of the corresponding group G has an 
open orbit Ad*Gt . 

Corollary 3.10. Under the assumption of Theorem 3.7, the Lie algebra E is Frobenius one 
iff the Lie algebra F is Frobenius. Moreover any exact form on G can be written as 

w = w3 + oe = we + d(e; + u*>, 

where 03 is an exact form on F and v* E V*. In particular, a closed form w is exact ifl 
w(.?=, E) = 0 and w[F is exact. 

Proof It follows from Theorem 3.7 and Lemma 3.3. 0 

Remark. Corollary 3.10 reduces the problem of description of open coadjoint orbits of the 
group G with the Lie algebra G to the same problem for the subgroup F, corresponding to 
the subalgebra 3. 

Denote by ~~(6) (resp. dG*) the space of closed, (resp. exact) 2-forms on the Lie algebra 
E and by H2(8) = .z*(G)/dQ* the corresponding cohomology group. Remark that the 
space A* c F is the space of closed l-forms on F and such forms are never exact. Using 
this we derive from Theorem 3.7 and Corollary 3.10 the following. 

Corollary 3.11. Under the notation of Theorem 3.7, assume that the elementary algebra 

8 = &+I has dimension 2n + 2. Then 
(1) dim.z2(G)=dimz2(fl+dimA+2n+1, 
(2) dimdG*=dimd3*+2n+l, 
(3) dim H2(8) = dim H2(.T) + dim A = dim H2(fl + dim H’(3). 
(4) If3 admits a symplectic structure then symplectic structures on Q depend on dim z2(G) 

parameters. 

We say that a Poisson bivector A is consistent with a semidirect decomposition 6 = 
3 + E if it is a sum of two bivectors A,, & with support in 3 and E, respectively. Then 
by Proposition 2.1 A,, As are commuting Poisson bivectors. We have 

Corollary 3.12. Under the notation of Theorem 3.7, any Poisson bivector A on Q which is 
consistent with the decomposition G = 3 + & is given by 

A=A,+Ae=A3++A,,,+elr\u, 1Ek, 

where A3 is a Poisson bivector on 3, Acan = 1/2eu A et + Zpi A qi and v E V is a vector 
commuting with the subalgebra supp A,. 

Proof By Corollary 3.4, any Poisson bivector on & has the form 
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for some u E V. Since (ad .F)A,,, = 0, we have [A,, Acan] = 0. Hence, the bivectors 
A,, A& commute iff [supp A,, u] = 0. This proves corollary. 0 

4. Closed 2-forms and symplectic structures on the Bore1 subalgebra of the 
semisimple Lie algebra 

Using the induction, we can apply the results of Section 3 to any Lie algebra G which is 
decomposed into semidirect sum 

G&+-.+&k 

of elementary subalgebras such that for any i > 1, E’ + . . + E’ is a subalgebra with the 
ideal E’ and the complementary subalgebra E’ + . . + E’-’ . 

Now we prove that the Bore1 subalgebra of the semisimple (complex or normal real) Lie 
algebra admits such semidirect decomposition (where sometimes also a subalgebra of the 
Car-tan subalgebra appears). 

Let 6 be a semisimple (complex) Lie algebra and R the corresponding root system with 
respect to the Cartan subalgebra 7-1. Recall that a subset Q c R is called closed if 

(Q + Q, n R c Q. 

Such subset defines a regular subalgebra G(Q) of G, generated by the root vectors E, , (Y E 

Q. 
More generally, two closed subsets P, Q of R define the regular subalgebra B = G(P) + 

G(Q) with the ideal G(P) iff 

(P + Q) n R c P. 

Denote by R+ a system of positive roots of G and by p the highest root of R+. We set 

R, = {CI E R+lp -CT E R+ U (O}] = ((Y E R+l(p, a) > 0) 

and 

Qp = R+ - R, = {a! E R+((p, ar) = O}. 

Proposition 4.1. 
(1) R,, Qp are closed subsets of roots and ( Qp + R,,) n R c R,. 
(2) The Bore1 subalgebra B(g) = 7-L + G(R+) of 9 and G(R+) admits a semidirect 

decomposition 

G(R+> = Ep + F,,. 

where EP = kH, + G(R,) is an ideal and Fp = l-t’ + G(QP) is a subalgebra. Here 
HP is the highest root vector and Ii’ is the orthogonal complement to HP into 7-l. 
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(3) The ideal Ep is isomorphic to the elementary Lie algebra &,,+I, where 1 R, 1 = 2n + 1 
andn = h” - 2, hV is the dual Coxeter number: 

Pro05 
(1) Note that the highest root p is always a long root and we normalize it as (p, p) = 2. 

Then the set R, has the form R, = RI U {p) where RI = (a[(~, p) = 1) since 
2(ar, p)/(p, p) < 2. Let y = a! + p E R+ for a! E R+, B E R+. Hence, 

ifa,BERl,then(y,p)=(a,p)+(B,p)=2,andy=p; 
if o, /3 E QP, then (v, p) = (a, p) + (/l, P) = 0 + 0 = 0 and y E Qp; 
ifa!ER1,BEQp,then(y,p)=(a,p)+(B,p)=l,andyER1. 
This proves (1). 

(2) Follows from (1) and the remarks before Proposition 4.1. 
(3) From the proof of(l), it follows that (RI + RI) fl R+ = [p). Hence we can write 

wherecq+/Ii = p,i = l,..., n are only non-trivial relations between the roots 
from R,. This shows that G(Rp) is the Heisenberg Lie algebra. Moreover, EP is the 
elementary algebra, because 

One can check easily that /Ii = -S,q where S, is the reflection in the hyperplane 
orthogonal to the root p and that n = h” - 2 where h” is the dual Coxeter number. 
This proves (3). 0 

Now we describe a decomposition 

of the Bore1 subalgebra of a semisimple Lie algebra 9 explicitly. It is sufficient to consider 
only simple Lie algebras. Recall that there are four series and five exceptional Lie algebras 
An, Bn, C,,, Dn, Eg, E7, Es, F4, G2. The basic characteristics of these algebras are given 
in Table 1. 

According to [7], Table 2 contains enumeration of the root system of each simple Lie 
algebra together with description of the subsystem 

R, = ]P]UR~, Rt = Iai, Pi Ioi + /% = P], 

associated with the highest root p. 
Recall that subsystem of roots S, = R + - R, consists of positive roots orthogonal to 

the root p, and so S, is generated by simple roots orthogonal to p. Hence S,, may be easily 
constructed from the extended Dynkin diagram of the Lie algebra D which corresponds to 
the set of simple roots and the minimal root (-p). The simple roots connected to the root 
(-p) are not orthogonal to the root p. The rest roots form the extended Dynkin diagram, 
which generate subsystem S, and the corresponding Bore1 subalgebra. 
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Table 1 

5pe of group Rank Coxeter number Number of positive roots 

A,, nz 1 n n+l ;ncn + 1) 
B,, n ~2 n 2n n2 
C,, n 23 n 2n n2 
D,, n 24 

;: 

2(n - 1) n(n - 1) 
E6 12 36 
El I 18 63 
E8 8 30 120 
F4 4 12 24 
G2 2 6 6 

Table 2 

Type of P Roots Highest root p Decomposition of p, 
p = ffj + Sj 

An, n>l 

B,,. n 12 

ei - ej 

fei f ej, *ej 

C,, n23 

D,, n>4 

fei f ej, &2f?j 

fe; f ej 

E6 ei -t?j,f2e 
ei + ei + ek f e 

El e; - ej 
ei + ej + ek +  ei 

E8 ei - ej 
f(ei + ej + ek) 

F4 fei f ej , fej el fe2 
i(fel h e2 f e3 4~ e4) 

G2 t?i -ej,fej 

el - en+1 

el +e2 

2el 

el +e2 

2e 

-el $ e8 

el -e9 

el -e3 

CYj =e] -ej,g =ej -e,+l, 
j =2,...,n 

Clj =el ft?j*Q =e2-e,. 
Fij =el -ej,Bj =ez+ej, 
ff2,-3 = el 3 B2+3 = e2 

j=3,....n 

lYj =el +ej.Bj =62) -e,j 

j =2,....n 

lXj =el -tej,(j =e2-ej 

CYj =el -ej./Tj =c?+ej 

j =3.....n 

cz,kl =e+ej fek +el. 
bjk[ = e - t?j - ek - el; 
j,k,l = l,..., 6 

Ctj=-e7+ejy4=eg-ej 
aj.kl=eafej+ek+e/, 
Bjkl = -e7 - ej - ek - el 
j.k,l = I,....6 

CY, =el -ej,/lj =ej -e9 
Cfjk = el + e, + ek, 
Bjk = -CT9 - ej - ek, j, k = 2. . 8 

a=el,B=e2 
oli=el+ej,Pj=e?-ej,j=3.4 
ol,=e,-ej,Bj=e2fej,j=3,4 
(Y6.7 = i(el + e2 + e3 * e4) 

86.7 = :(el + e2 - e3 F e4) 

‘~1 = el, /?I = -eg 
(~2 = el - e2,& = e2 - ej 
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Table 3 

B&t) = En + (B(A,_z) + kH;, 
W&z) = &2n-2 + @%-2) + aCAl)) 
&GJ = % +&G-l) 
B(Dn) = &2,,-3 + (B(D,-2) +&Al)) 
a(E6) = El1 + &A5) 
S(E7) = El7 + 13@6) 
@Es) = &29 + L3(E7) 
&F4) = E8 + a(c3) 
WG2) = f3 + &Al) 

Table 4 

B(A,)=E,+En_2+...+E2(orE1)+3-1:,; m=[n/2] 
8(&j = E2,,-2 + Ezn-6 + . . + Ea(or E2) + mE1, m = [(n + 1)/21 
B(C,)=E,+E,-I+...+E~+E~ 
B(D,) = E2,,_3 + E2,,-7 +. . . + E5 + (m + l)El, n = 2m 
a(D,)=E2n_3+E2n-7+...+E3+mE1+H1, n=2m+l 
&&) = El1 + E5 + E3 + El + 7-12 
B(E7) = E17 + E9 + E5 + 4E1 
&Es) = E7.9 + E17 + E9 + E5 + 4El 
B(F4) = E8 + E3 + E2 + El 
B(G2) = E3 + El 

Note that the number of roots in R, is equal to 2h” - 3, where h” is the dual Coxeter 
number. 

Using these remarks, we obtain the decompositions of the Bore1 subalgebra indicated 
into Table 3. Here Hi is the element of the Cartan subalgebra 31 which corresponds to 
(n - l)(et + e,+t) - 2(e2 + ... + en) under the identification 1-I = ‘H*. Recall that 
dim (En) = 2n. 

Using Table 3 it is easy to write the explicit formulae for the decomposition of the Bore1 
subalgebra of any semisimple Lie algebra into the elementary subalgebras. We present the 
results in Table 4. 

Here ‘I-& is the subalgebra of the dimension m of the Car-tan subalgebra. 
Using the results of Section 3, we derive now some corollaries from these results. 
By Corollary 3.10, any subalgebra B which admits a decomposition into a semidirect 

sum of the elementary subalgebra is a Frobenius Lie algebra. This means that the coadjoint 
action of the corresponding Lie group has an open orbit or, in other words, 23 has an exact 
symplectic form. Checking Table 4 and using Corollary 3.11, we get the following result. 

Proposition 4.2. 
(1) 

(2) 

The Bore1 subalgebra of a simple Lie algebra 6 is Frobenius one i$Q is di$erentfrom 

An, D2,,,+1 and E6. 
The minimal dimension of the kernel of an exact 2-form (which is equal to the codimen- 
sion of a regular coadjoint orbit) is equal to m = [n/2] for B(A,), 1 for B(Dz,,,+l) 
and 2 for !3( E6). 
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(3) The Bore1 subalgebra admits a symplectic form iff its dimension is even. In the opposite 
case it admits a closed 2-form with one-dimensional kernel. 

Recall that for the elementary Lie algebra En the dimension of the space of closed 2-forms 
is equal to 2n - 1 and H*(&) = 0, since any closed 2-form is exact (Lemma 3.3). Now 
we calculate the cohomology H*(!3(Q) for each simple Lie algebra 8. 

Proposition 4.3. Let 6 be a simple Lie algebra of rank n. Then 

dim H2(f3(G)) = in(n - 1). 

Pro05 Let B = E’ + . . . + EP + ‘I-& be a decomposition of the Lie algebra B(Q) of rank 
n into semidirect sum of elementary Lie algebras and the commutative q-dimensional Lie 
algebra ‘HFI, . 

Then Corollary 3.11 implies the following formula for the dimension of the second 
cohomology group: 

dim H*(O) = (n - 1) +. . . + (n - p) + iq(q - 1) 

= &(2n - p - 1)p + iq(q - 1). 

For the Frobenius Bore1 algebra, q = 0, p = n and we get the Proposition. Using this 
formula we check Proposition also for the cases G = Azm+t, Azm, I&+1 and Eg. 

Now the calculation of the dimension of the space of closed 2-forms reduces to the 
calculation of the dimension of the space of exact 2-form. For the Lie algebra with a 
semidirect decomposition t? = &,, + F we have 

dimdB* = 2n - 1 +dimdp 

by Theorem 3.7 and Corollarv 3.11. More generally, for the Lie algebra with a semi-direct 
decomposition 

we get formula 

dimdB* = e(2ni - l), 
i=l 

i.e dim dD* is equal to the number of positive roots of algebra 0. Using this formula we 
calculate the dimension of the space of exact 2-forms d&G)* and the space z*@(G)> 
of closed 2-forms for all simple Lie algebras 8. The results are presented in Table 5. 

Let 

a(G) = EnI + En2 + . . . + En, + ‘H, 
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Table 5 

Type of group E dim z’@(G)) dim I?*@(~) dim d&G)* 

.* in(n - 1) 

+l(3n - 1) ;,(?I - 1) 

~n(3n - 1) in(n - 1) 

$(3n - 1) $n(n - 1) 

51 15 
84 21 

148 28 
30 6 

7 1 

n(n - 1) 

36 
63 

120 
24 

6 

be the decomposition of the Bore1 subalgebra of the simple Lie algebra Q into the sum of 
elementary Lie algebras and, may be, the commutative Lie algebra, described in Table 3 
denoted by Ai the canonical Poisson bivector on elementary subalgebra Ei and by Au any 
bivector on the commutative subalgebra XH,. Then Corollary 3.12 implies the following 
result. 

Proposition 4.4. The Poisson bivectors Ai, i > 0, commute with each other and dejine the 
Poisson bivector 

A=Al-t..-+A,+Ao 

on the Bore1 subalgebra B(Q). 
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